Piecewise smooth approximations toq-plurisubharmonic functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems

The purpose of this paper is to introduce and study the most basic properties of three new variational problems which are suggested by applications to computer vision. In computer vision, a fundamental problem is to appropriately decompose the domain R of a function g ( x , y) of two variables. To explain this problem, we have to start by describing the physical situation whch produces images: ...

متن کامل

Approximating Piecewise-Smooth Functions

We consider the possibility of using locally supported quasi-interpolation operators for the approximation of univariate non-smooth functions. In such a case one usually expects the rate of approximation to be lower than that of smooth functions. It is shown in this paper that prior knowledge of the type of ’singularity’ of the function can be used to regain the full approximation power of the ...

متن کامل

Piecewise-smooth Refinable Functions

Univariate piecewise-smooth refinable functions (i.e., compactly supported solutions of the equation φ( 2 ) = ∑N k=0 ckφ(x−k)) are classified completely. Characterization of the structure of refinable splines leads to a simple convergence criterion for the subdivision schemes corresponding to such splines, and to explicit computation of the rate of convergence. This makes it possible to prove a...

متن کامل

Piecewise-Linear Approximations of Uncertain Functions

We study the problem of approximating a function F : R→ R by a piecewise-linear function F when the values of F at {x1, . . . , xn} are given by a discrete probability distribution. Thus, for each xi we are given a discrete set yi,1, . . . , yi,mi of possible function values with associated probabilities pi,j such that Pr[F(xi) = yi,j ] = pi,j . We define the error of F as error(F,F) = maxi=1 E...

متن کامل

Best Approximations by Smooth Functions

THEOREM 1.1 (U. Sattes). Let r > 2 and g E C[O, l]\B$,‘. Then f”EB$’ is a best approximation to g, in L” (such a best approximation necessari/J) exisrs) if and only if there exists a subinterual (a, /?) c IO. 1 I and a positilse integer M > r + 1 for which the following conditions hold (i) f”l,n.ll, is a Perfect spline of degree r with exactly) M ~ r -1 knots arzd I.f”““(s)l = I a. e. on [u,pI....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1990

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1990.142.227